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The Detection of Markovian Sequences of Signals 

Morton P. Friedman and Edward C. Carteret te  

Human Communication Laboratory, Department of Psychology 

University of California, Los Angeles 

ABSTRACT 

The influence of constrained s t imu lus  sequences 

on detection was studied in a two-alternative temporal 

forced-choice task  with feedback. Three observers  

listened to a weak pure tone embedded in noise whose 

probabilities of occurrence and repetition in an inter-  

val were  governed by a first-order Markov process.  

Each observer listened to examples of each of nine dif- 

ferent Markov chains. Results were: (a) A single func- 

tion relating detections to false alarms fitted individual 
-- - 

se ts  of data well, in agreement with the theory of signal 

detectability, except (b) that detection was higher for 

more extreme repetition probabilities; (c) Responses 

depended strongly on the previous stimulus with (d) 

the dependence being peculiar to a given chain; (e )  Detec- 

tion probabilities increased during runs of signals in 

the same interval, yet ( f )  probability of detection on the 

first t r i a l  of a run in  a given interval did not depend on 

the length of the preceding run in the other interval. 
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The Detection of Markovian Sequences of Signals 

It i s  well known that the judgments of practiced observers  

in psychophysical experiments depend in an important way on 

both the previous sequence of stimuli and the observer ' s  response 

to these stimuli. As long ago as  1860, Fechner pointed out 

that there  were  substantial sequential response effects in the 

data of psychophysical experiments. For the most part ,  how- 

ever,  researchers  interested in psychophysical problems have 

not c o nc e r ned the ms elv e s with s equent ial effects . 

1 

Recent years  have seen a rebirth of interest  in the analysis 

of sequential effects in psychophysical judgments. This interest  

s tems from two sources: f irst ,  the development of analytic tech- 

niques such as information theory and finite state methods; s e -  

cond, the emergence of theoretical interpretations of psycho- 

physical experiments for which sequential effects a r e  regarded 

a s  important aspects of the data. 

The use of information measures  in the analysis of sequential 

2 dependencies is illustrated by McGill's 

in auditory judgments. 

tones of equal intensity but differing in frequency was presented 

against a background of noise. 

the tone presented on each trial .  

was varied by varying the noise level. 

McGill analyzed his data to  determine the joint effect of previous 

responses (called presponse effects) and the stimulus in determining 

experiment on ser ia l  effects 

On each of s e r i e s  of trials, one of four 

The observer 's  task was to identify 

The difficulty of the judgment 

Using uncertainty measures ,  
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judgments. 

lower than 22 db. 

McGill found a marked presponse effect for S/N ratios 

This corresponded to judgments a t  o r  below the 

threshold. 

decreased. 

of observers  to  avoid repeating responses on successive t r ia l s .  

In one se r i e s  of trials run by McGill, no tones were ever  presented. 

This can be regarded a s  a - 00 S/N ratio. McGill argued that 

there  was a continuum of presponse effects, running f rom the -6 

S/N rat io  condition in  which observers simply guessed on each 

t r i a l  (although they were  unaware that no tones were presented). to 

high S/N ratios i n  which the judgment was determined solely by 

the present stimulus. In a signal detection task, Speeth and 

Mathews 

sentially comparable to McGill's. 

interesting finite state approach to their  data which promises  to be 

quite useful. 

response effects using uncertainty measures  is contained in a recent 

book by Garner. 

As the S/N ratio increased, the presponse influence 

The nature of the presponse effect was the tendency 

3 obtained resul ts  on presponse effects which w e r e  es- 

Speeth and Mathews applied a n  

An excellent discussion of research  on sequential 

4 

The second recent source of interest  in sequential effects has 

been the development of new theories of detection such as those of 

Atkinson, LaBerge, Luce, and Restle, some of which regard 

sequential response s ta t is t ics  as  important aspects of detection r e s -  

ponding. Like the theory of signal detectability, these new theories 

a r e  judgmental theories in  the sense that they deal explicitly with 

psychophysical and situational variables. 

5 6 7 8 

9 

But whereas the main 
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emphasis in theory of signal detectability has been on psychophysical 

variables, the major  concern of these competing theories has been 

the influences of situational variables such as feedback and signal 

probability on detection responding. 

These newer theories may be considered as an outgrowth of 

research  on disc rimination and probability learning in mathematical 

learning theory. In the probability learning or  guessing experr- 

1 0  1 1  and Anderson ment (reviewed by Estes  

simply to predict on each of ser ies  of t r ia ls  which one of a set  of 

) the observer 's  task is 

events will occur.  

actually occurred on that trial. 

learning experiment, termed the "non-contingent" case,  the sequence 

of events which occur on each t r ia l  is programmed independently 

of the observer 's  responses according to some probabilistic schedule. 

The non-contingent probability learning experiment is strikingly 

like the -6 S/N ratio condition (in which no tones were  presented) 

in the McGill experiment discussed ear l ie r .  The probability learn-  

ing experiment may be said to  represent an important limiting case 

of judgment, i n  which responding is completely determined by sit- 

uational variables. Sequential statist ics have played a major role 

in both the descriptive and theoretical analysis of the probability 

learning experiment. 

learning experiment and the usual psychophysical experiment in 

which the judgment i s  jointly determined by situational and psycho- 

physical var ables,  it might be assumed that the analysis of sequential 

Following his response, he is told which event 

In the simplest sor t  of probability 

2 

Assuming a continuity between the probability 



task was to indicate which interval he thought contained the signal. 

The temporal intervals were indicated to the observer by a 

display of pilot lamps. 

interval followed by the two .75 second observation intervals. 

observer made his response by pressing one of two pushbutton 

switches. 

lamps came on for  one second to  indicate the interval which con- 

tained the signal on that tr ial .  

the next t r ia l  began. 

On each trial ,  an electronic switch gated the signal on for 100 

ms.  (whose r i se  and fall times were equal to 25  ms. ) in the middle 

Each t r i a l  began with a one second warning 

The 

As soon as the observer responded, one of two feedback 

After a 1. 5 second inter t r ia l  interval, 

6 .  

statistics will prove of equal importance in understanding psycho- 

physical experiments. 

effects in judgment is motivated by these considerations. 

The research in this laboratory on sequential 

In the present experiment, we focused attention on the role of 

stimulus sequence in  determining the sequence of judgments To 

do this, we employed Markovian schedules of signal presentation, 

and compared the effects on detection performance of a number of 

different f i rs t -order  Markov chain generators of t r ia l  sequences 

in a forced choice task. 

METHOD 

A conventional tw 0- alternative t empor a1 - forced - choice detect - 
ion task was employed. 

appeared in one of two temporal observation intervals against a 

continuous background of wide-band Gaussian noise. 

On each t r ia l ,  a gated 1000 c/s  sinusoid 

The observer 's  
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of one of the observation intervals. 

Observers listened binaurally over PDR-8 earphones in an anechoic 

The noise was not filtered. 

chamber. 

three observers.  

The same signal and noise levels were used for a l l  

The calculated E/No value was about 5. 2. 

Nine different f irst-order Markov chains were used to gen- 

erate  the sequence of intervals in which the signal appeared on 

successive t r ia ls .  The chains differed in both the overall (apriori)  

probabilities of occurrence of the signal in the f i rs t  interval, and 

in the probabilities of repetition of signal in a given interval on a 

pair  of successive t r ia l s .  Transition matr ices  for the nine Markov 

chains and examples of the sequences generated with them a r e  

shown in Table 1. A cell entry shows the probability that the signal 

Table I follows 

on the present [ o r  (nt1)st ] t r ia l  is in interval 1 o r  2 - the columns 

- given that the signal was in interval 1 o r  2 on the preceding (or nth) 

- -  
- 

t r ia l  - the rows. As an example consider Chain B. The f i r s t  

entry in the f i rs t  row is . 8, the second .2,  which means that if the 

signal was in interval 1 on the las t  t r ia l ,  

this t r i a l  with probability -8, and in interval 2 on this t r i a l  with 

it will be in interval 1 on 

probability -2. The column entries fo r  the second row a r e  identical 

with those for the f i rs t  row. This means that the transitions do not 

depend upon t r ia ls ,  that is  to say, successive t r ia ls  a r e  independent 

Furthermore,  the overall probability of a signal in the f i rs t  interval, 

indicated by P(S1), is equal to . 8. Chains A,  B, and C were al l  indep- 

endent t r i a l  processes with P(S ) equal to . 5, . 8, and . 2, respectively. 1 
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Chain D generated sequences with P(S1) = . 5  but with the prob- 

ability of a repetition of the signal in the same interval on successive 

t r ia ls  being . 8. The sample sequences from this generator have 

longer homogeneous runs of signals in a given interval, compared 

with those f rom generator A, even though both A and D have P(S1) 

equal to . 5. Chain E sequences had P(S1) o f .  5 but the probability 

of the signal interval alternating on successive t r ia l s  was equal to 

. 8 .  Thus, the sample sequence for E shows shorter  homogeneous 

runs of signals than A o r  D with the same aprior i  probabilities. 

Chain F, i f  the signal occurred in the f i r s t  interval in t r i a l  - n, it 

repeated in that interval only with probability . 5.  

In 

Chain H had the 

same structure as F with intervals reversed. In Chains G and I, 

one signal tended to repeat in an interval with probability only . 2, 

while the other repeated with probability . 5. 

Three paid observers  were used in the.study, and al l  had at 

least 10, 000 t r ia l s  of practice on the various schedules before the 

actual data were taken. 

of four 164-trial blocks. 

Each daily experimental session consisted 

There was a five minute r e s t  period be- 

tween blocks in which observers left the experimental chamber.  

The first four t r ia l s  of each block were  "memory" trials, in which 

the signal level was increased 10 db. and the signal was presented 

twice in each observation interval in an  1221 order .  Only the las t  

150 t r ia l s  of each block were used in the analysis of the data. In a 

given daily session, only sequences generated by one of the nine 

chains were  used. The nine chains were run through in random 
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order  in successive experimental sessions, then were replicated 

in a new random order .  

t r ia l  sequences were  constructed, and they were presented to each 

observer in a different random order.  

constructed for use in the preliminary practice sessions.  

sequences were generated by a computer program, and only those 

sequences were used which a)(  

of-fit test  could not reject at the . 05 level. 

For each of the nine chains, eight 160- 

Additional sequences were  

The 

2 f i rs t -order  Markov chain goodness- 

The practice sessions which preceded the experiment also 

consisted of four 164-trial blocks, but sequences from chains A, 

B, C, D, and E were presented in a haphazard order  in each session. 

Observers were not told anything about the purpose of the 

experiment, were  not informed about the various Markov chains 

used to generate the t r ia l  sequences, and were never told when 

conditions were shifted. 

RESULTS AND DISCUSSION 

2 Before pooling the data over blocks of t r ia l s ,X t e s t s  for homo- 

geneity of proportions were performed for each observer  on the pro- 

portion of cor rec t  responses in each interval for the 8 blocks of 

t r ia ls  for  each chain. 

of homogeneity be rejected at  the . 05 level, and there  was no apparent 

pattern to the magnitude of the observedX2's .  

the conditions of this experiment, using feedback on each t r ia l  and 

shifting schedules during the preliminary sessions,  observers  come 

to adjust ra ther  quickly to the context of a given type of sequence 

of t r ia ls .  

In only 3 of the 54 tes t s  could the hypothesis 

It appears that under 

In all  analyses, the data a r e  pooled over blocks and 
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replications for each chain. 

Mean detection ra tes  on the various schedules for the three 

observers  a re  shown on ROC plots in Figure 1. For  illustrative 

Figure 1 follows 

purposes, we have fitted by eye functions derived from the theory 

of signal detectability to the data. There a r e  a few things to note 

about these results. 

Firs t ,  although strong biases were induced by the various 

schedules, the single functions give a reasonable approximation 

to the data. 

schedules a r e  s imilar  for the three observers.  

the position of a given chain on the curve is determined by the over- 

all apriori  probabilities, irrespective of the stimulus dependencies. 

Thus, chains with high apriori  probabilities of the signal being 

in the f i rs t  interval a r e  the highest points on the function, and 

chains with the lowest apriori  probabilites of the signal in the f i r s t  

interval a r e  the lowest points on the functions. 

Second, the pattern of biases induced by the various 

For the most part, 

The third point to 

be made about the data in Figure 1 is that there  is some suggestion 

of greater  sensitivity on schedule D, in which signals tend to repeat 

and long runs of signals occur in the same interval. Sequences 

from Chain D yield the largest estimate of d '  for  all observers .  

apparent increase in sensitivity may simply be due to  a decrease in 

the observer 's  ulrertainty a s  to the onset time of the stimulus during 

a run of t r ia ls  in which the signal recurred in the same interval. 

Egan, Greenberg, and Schulrnanl2 have shown signal uncertainty to 

This - 
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be a potent determiner of detection performance and Green9 has 

discussed theoretical implications of this for the theory of signal 

detectability. It i s  reasonable to  assume that, in responding to 

sequences generated by Chain D which tended to have long runs 

of t r ia ls  in which the signal recurred in the same interval, ob- 

s e rve r s '  uncertainty a s  to the onset time of the signal would 

decrease during a run and detection would be enhanced. 

Of greater  interest to the study of stimulus dependencies i s  

responding during runs of tr ials on which the signal recurs  in the 

Figure 2 follows 

same interval. 

to the various chains during such runs. Since the data f rom the 

three observers  were similar,  we have averaged over the three 

observers.  And, whenever possible, we have combined data with- 

in and between symetrical chains, such as B and C, and G and I. 

Thus, we have combined frequencies of cor rec t  responding for both 

intervals in Chain A. Likewise, the points labeled B-S a r e  f rom 

the combined tabulations of runs of signals in the f i r s t  interval for 

Chain B and runs of signals in the second interval for Chain C. 

a r e  presented only for  those points fo r  which there  a r e  a t  least  125 

observations. Because the number of possible observations of runs 

depends on the structure of the chain, the number of points for each 

chain differ. 

the k t h  t r ia l  of runs longer than k. The gist of Figure 2 seems to be 

a s  follows: 

Figure 2 shows the proportion of correct  responses 

1 

Data 

Points for  runs of length k include observations for - 

- - 
For schedules in which successive t r ia l s  are independent, 
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there is  a slight increase in correct responding during a run. 

for Chain A, with aprior i  probabilities of . 5, and independent t r ia ls ,  

the mean detection rate  f o r  the f i r s t  t r i a l  of a run is . 66, and in- 

Thus 

c reases  to . 70 on the fifth tr ial  of a run of signals in the same inter-  

val. 

in the f i rs t  interval equal to -8, the curve labeled B-S shows the 

On Chain B, with an aprior i  probability of signal occurrence 

1 

detection rate  during runs of tr ials in which the signal recurred 

in the f i rs t  interval. On the first  t r ia l  of a run, the mean detection 

rate  was . 79, and on the 11th t r ia l  of the run, the mean detection 

ra te  was . 84. 

For chains in which there were dependencies in  the stimulus 

sequences, detection responding mir rored  these dependencies 

markedly. For  example, consider Chain D, in which P(S ) was 

. 5,  but signals recurred in the same interval with probability . 8 

1 

on successive t r ia ls .  Figure 2 shows that on the f i r s t  t r ia l  of a 

run, the detection rate  was . 45, but that it increased rapidly to 

about . 85.  Responding to signals in the f i rs t  interval for Chain F, 

(the points labeled F-S ) show the same effect to a l e s se r  extent. 

For  Chain E, where the signal tended to alternate in the two inter-  

1 

vals on successive tr ials,  the detection rate  on the first t r ia l  of a 

run was .70, and dropped to . 5 8  on the second t r ia l  of a run, again 

mirroring the dependencies in the signal sequence. The same effect 

occurs in responding to runs of signals in the f i r s t  interval for  

Chain G (the points labeled G-S1). 

signal events on preceding trials a r e  important determiners  of t r ia l -  

These results make it c lear  that 
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to - t r ia l  response biase s. 

Another statistic of interest in gauging the influence of stim- 

ulus dependencies on responding is the detection rate  on those 

t r ia l s  which break a run of signals in a given interval. Figure 3 

Figure 3 follows 

shows the detection rate  on the f i r s t  t r ia l  of a run of signals in 

a given interval a s  a function of the length of the preceding run of 

signals in the other interval. The points a r e  labeled and the data 

were tabulated in the same way a s  the run data in Figure 2.  The 

result here is  quite clear: There is little o r  no effect of the length 

of the preceding run on detection responding, excepting a slight 

effect for chains which tend to alternate. These data indicate that 

when the signal switches intervals, the immediately preceding 

t r ia l  is the important determiner of bias. 

We have discussed only the effects of stimulus contingencies 

on responding. 

responses is quite small  compared to the effects of preceding 

stimuli. 

l4 indicates tr ial .  Research in this laboratory and elsewhere 

that when feedback is employed, it is  the important determiner of 

sequential responding; when there is no feedback, then previous 

responses appear to be important. 

when there i s  no feedback i s  a tendency to alternate responses, a s  in 

The observed dependence of responses on preceding 

This is probably because of our use of feedback on every 

13 

The nature of the dependence 

2 McGill's study, o r  to repeat responses, a s  in a recent study by 

Parducci and Sandusky. Much clarification is needed of the var 14 ables 
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which control responding in the absence of feedback. 
i .  

The theory of signal detectability has  not yet been extended 

5 to deal with sequential response effects, but Atkinson's detection 

model has  been developed in enough detail to allow exact quanti- 

tative predictions of sequential statist ics.  

threshold theory of the so r t  proposed by Blackwell. l 5  Atkinson 

It is essentially a 

formulated his theory in the language of stimulus sampling theory, 

but we shall  discuss it in more general  t e r m s  here.  As applied 

to the yes-no experiment with feedback, it is assumed that on 

every trial, the observer either correct ly  detects the presence 

or absence of the signal, or he is uncertain whether the signal 

was presented. If he is uncertain, he guesses. According to 

Atkinson's model, sequential effects a r e  due to  the fact that the 

guessing probabilities change in a t r ia l - to- t r ia l  fashion as a func- 

tion of the feedback. If a s igna l  is presented on a given trial, thek 

the probability of guessing yes associated with the uncertain state 

increases;  i f  the feedback indicates that no signal was presented, 

- 

then the probability of guessing yes decreases .  Atkinson's theory - 
has had success in accounting for  sequential effects as well as  

16 mean response proportions in  both feedback and non-feedback visual 

and auditory detection experiments. 17 

However, Atkinson's theory is not consistent with our resul ts  

The main difficulty seems to be with predictions concerning r e s -  

ponding during homogeneous runs of signals in the same interval. 

Atkinson's prediction is ,  that during homogeneous runs,  detection 
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ra te  should continue to increase, and assuming that sensitivity is 

constant, responding on a l l  schedules should approach the same 

asymptote. Similarly, 

Atkinson's theory predicts that the probability of a correct  detection 

on the first trial of a run of signals in an interval should be a de- 

creasing function of the preceding run length in  the other interval. 

The data presented in Figure 3 indicates that responding on the 

first trial of a run is  independent of the length of the preceding run 

in the other interval. 

This is clear ly  not the case in Figure 2. 

W e  do not regard these negative resu l t s  in themselves as parti-  

cularly damaging to Atkinson's model. 

that i f  Atkinson's theory about changes in guessing probability when 

in the uncertain state were  modified t o  put grea te r  weight on the 

outcome of the preceding trial, then predictions would be more  in  

line with our resul ts .  Also, sequential analyses of data f rom other 

experiments in this laboratory 13' l 7  have yielded resul ts  which are 

at least  in qualitative agreement with Atkinson's model. The main 

difference between this study and the others seems to  be that in the 

present study, observers  were exposed to a much wider var ie ty  of 

probabilistic schedules. 

of this experiment, observers  quickly adjusted to the context of a 

new schedule, and the observed sequential effects are determined 

by a few short  t e r m  strategies that the observers  are using. The 

quantification of a theory incorporating these notions is difficult, but 

the finite s ta te  methods used by Speeth and Mathews 

a reasonable approach. 

For  one thing, it i s  c lear  

Our impression is that under the conditions 

3 
seem to offer 
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Figure Captions 

Figure 1. ROC plots for the three observers.  

Proportion of correct  responses in Interval 1 [ P(A S ) 1, a r e  

plotted against the proportion of incorrect responses in 

Interval 2 [ P(A1 S z )  1. 
different Markov chain generators. 

1 1  

Points labeled with le t te rs  a r e  f rom 

The smooth curves a r e  

derived from the theory of signal detectability. The d'  values 

for the three observers  were 1.08 for 0-1 and 0-3, and . 94 

for 0-2. 

- 

- - 

- 

Figure 2. 

Proportion of correct  responses [ P(C)  ] averaged over the 

three observers a s  a function of run length for the various 

Markov chain generators. 

Figure 3.  

Proportion of correct  responses [ P(C)  ] on the f i r s t  t r ia l  of 

a run a s  a function of the preceding run length in the other 

interval shown for the various Markov chain generators. 

Data a r e  averaged over the three observers.  


